
AVSAKNADEN AV KONTROLLER
By Martin Jartelius

WWW.OUTPOST24.COM

WHOAMI?

Distributed systems development studies

“Tabletop” security consultant

IT forensics analyst

Penetration tester

Lead penetration tester

CSO

Interesting tasks

- “How do we map WASC to OWASP to CWE and CAPECS?”

- Explaining the difference between a false positive and an accepted risk

- Lots of research, exploitation, security testing and fresh air

Martin Jartelius

ADVANTAGE

Global company founded in Sweden

Vulnerability management

Founded in 2001

Scans network components, servers and web

applications

Released SWAT in 2014 to target high profile

web applications

“Best scanning engine” and “Ease of use” by

Frost & Sullivan (2014)

Over 56,000 vulnerability controls

Most supported CVEs of all vendors

Dun & Bradstreet AAA credit rating

2500+ customers around the globe

ABOUT OUTPOST24

SWAT

State-of-the-art
vulnerability management
solution

Best web application
security

Outpost24
Security experts

BENEFITS OF SWAT

Immediate deployment

No false-positives

Continuous monitoring

Production-safe scanning

Fully managed security services

Analysis, verification, testing and false-positive

elimination

24/7 technical support

40 MINUTE-SESSION

Insecure direct object references

Missing function level access control

Invalidated redirects and forwards

OR

“Why stupid people ensure my job in IT security”

INSECURE DIRECT OBJECT REFERENCES

“A direct object reference occurs when a developer exposes a reference to an

internal implementation object, such as a file, directory, or database key. Without

an access control check or other protection, attackers can manipulate these

references to access unauthorized data.” – OWASP TOP 10 2013

INSECURE DIRECT OBJECT REFERENCES

In real life this is rather obvious

“Pick a number between 1 and 10”
“Ok… 11!”

Or

“You can read the first, second and tenth bank statement on my desk”

“Ok, then please give me the fourth”

INSECURE DIRECT OBJECT REFERENCES

User is intended to be able to access the
functionality

A passed value is used to access objects

Access restrictions are not applied to ensure the
user is authorized to access said objects

http://example.com/readmessage.php?message=15

http://example2.com/edituser.php?id=10

http://example.com/readmessage.php?message=15
http://example2.com/edituser.php?id=10

Ease of detection?

Manual analysis Easy
Automatic detection Almost impossible

Testing for this problem

Identify any references in the applications to identify sensitive information

Verify if they are relative or direct references

Attempt to alter the intended behavior by passing other references

Risks

Total loss of confidentiality

Combination of vulnerabilities follow the 1+1=3 logic

INSECURE DIRECT OBJECT REFERENCES

INSECURE DIRECT OBJECT REFERENCE

INSECURE DIRECT OBJECT REFERENCE
Persistent XSS possible also
Could only hit the user who uploaded it
Combined with Insecure Direct Object References we get what?
A way better, higher impact Cross Site Scripting!
We also get to read everyone's support cases, but well…

EICAR.COM.TXT

Ok, that’s a support module.

Lets up the stakes – SCADA

Yes.

Power plants, traffic lights, baby monitors and more…

Time to get to look at HoneyWell Falcon XL WEB

CVE-2014-2717

Well suited for todays talk - it is an almost “Top Ten Complete” device

INSECURE DIRECT OBJECT REFERENCES

Ok, that’s a support module.

Let’s up the stakes – SCADA

Yes.

Power plants, traffic lights, waste water, baby
monitors and more

Time to get a look at The HoneyWell Falcon XL WEB

CVE-2014-2717

Well suited for today’s talk - it is almost a “Top 10
complete” device

INSECURE DIRECT OBJECT REFERENCES

INSECURE DIRECT OBJECT REFERENCE
Guest – guest anyone?

INSECURE DIRECT OBJECT REFERENCE
Good start – We have a user ID in the URL
/standard/useradmin/password.php?Locale=1053&User=[USER ID]

INSECURE DIRECT OBJECT REFERENCE
AND we have an information disclosure – the MD5 of the password (30 is guest)

INSECURE DIRECT OBJECT REFERENCE
AND we have an information disclosure – 29 is an administrator

INSECURE DIRECT OBJECT REFERENCE

Let’s halt for a second and discuss something important

553648130 – That looks fairly large and random

System admin?

553648129

First user added by a customer to the system?

553648131

Session IDs are also non-random

And for a system event returning “Success” they return “4194561”

INSECURE DIRECT OBJECT REFERENCE
Sorry all – I’ll derail and explain how to privilege escalate. Just to show how serious those things are.
(Image shows the system as used on Stuttgart Airport, credits to Honeywell CZ)

INSECURE DIRECT OBJECT REFERENCES

function onSessionCreated (sResult, sSessionID)
[code to check the PLC is ready (sResult), if so, continue]
…
var sUserName = document.forms.main.elements["LoginUserName"].value;
var sPassword = calcMD5 (document.forms.main.elements["LoginPassword"].value);
sPassword = calcMD5 (sSessionID + sUserName + sPassword);
sUserName = calcMD5 (sUserName);
document.forms.main.elements["LoginSessionID"].value = sSessionID;
document.forms.main.elements["LoginUserNameMD5"].value = sUserName;
document.forms.main.elements["LoginPasswordMD5"].value = sPassword;
submitCommand ("Login");

Access admin hash Start new session
MD5(session,

username,
MD5(password))

MD5(username) Login

INSECURE DIRECT OBJECT REFERENCES

How to prevent this vulnerability
Preventing insecure direct object references requires selecting an approach for protecting each user accessible
accessible object (e.g., object number, filename):

Use per user or session indirect object references.

Check access. Each use of a direct object reference from an untrusted source must include an access
access control check to ensure the user is authorized for the requested object.

https://www.owasp.org/index.php/ESAPI

INSECURE DIRECT OBJECT REFERENCES

Further reading

OWASP
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References

MISSING FUNCTION LEVEL ACCESS CONTROL

“Applications do not always protect

application functions properly. Sometimes,

function level protection is managed via

configuration, and the system is

misconfigured. Developers must include the

proper code checks, and sometimes they

might forget to do so.

Detecting such flaws is easy. The hardest

part is identifying which pages (URLs) or

functions exist to attack” – OWASP TOP10

2013

MISSING FUNCTION LEVEL ACCESS CONTROL

This may seem odd in real life, but the best effort is visualized in these two
images:

Imagine two stamps available at a bank:

OK to leave out May require access control

MISSING FUNCTION LEVEL ACCESS CONTROL

This translates a bit strange to real life, but it is best visualized here:

MISSING FUNCTION LEVEL ACCESS CONTROL

“User” is not intended to have access to the functionality, nevertheless he can do it
with no authorization or a very low level of authorization. Often, but far from always,
this is combined with the last problem area.

Examples from the last week or so of testing systems:

/Shell/Statements/AccountBalance.aspx?account=[direct object reference]

/system/admin/network/diagnostics/ping?ip=[command injection]

/changepassword.php?id=[direct object reference]

/reboot.cgi

/install.php

/editUser.php?id=[direct object reference]

MISSING FUNCTION LEVEL ACCESS CONTROL

Ease of detection?

Manual analysis Easy
Automatic detection Almost impossible

Testing for this problem

Walk through your application and all calls

Determine which ones are privileged

Attempt to call the function from a lower privilege level

Risks

Total loss of confidentiality, integrity, availability

MISSING FUNCTION LEVEL ACCESS CONTROL

We will start with an example.

Remember the change password?

Yes, that’s pre-authentication. That’s a
perfect example

MISSING FUNCTION LEVEL ACCESS CONTROL

Targeting SCADA again – Climatix

Developed by Siemens

Used by many other vendors

A fellow researcher and I were researching SCADA and…

MISSING FUNCTION LEVEL ACCESS CONTROL

The awesome exploit? Writing /RMS/ after the
hostname

MISSING FUNCTION LEVEL ACCESS CONTROL

And if upload and execute does not satisfy the lazy
attackers need…

MISSING FUNCTION LEVEL ACCESS CONTROL

DLINK – TELCO

REDACTED AS FIX IS STILL UNDER IMPLEMENTATION

HACKING DLINK

DLINK – TELCO
REDACTED AS FIX IS STILL UNDER
IMPLEMENTATION

MISSING FUNCTION LEVEL ACCESS CONTROL

How do I prevent this?

Build a security model for authorization as a module and invoke this
this from the business functions

Design a practical flow for granting access, ensuring its also easy to
to audit

Do not hard code

Set to “Default Deny”

Build the model around roles

If the function is involved in a workflow, check to make sure the
conditions are in the proper state to allow access.

Hiding links and buttons to unauthorized functions does not provide
provide protection

MISSING FUNCTION LEVEL ACCESS CONTROL

More reading

https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control

https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control

Pause – I’ll be back

www.outpost24.com

MJ@OUTPOST24.COM

+46 708 47 43 15

mailto:MJ@OUTPOST24.COM
mailto:MJ@OUTPOST24.COM

WHOAMI?

Martin Jartelius
CSO

INVALIDATED REDIRECTS AND FORWARDS

“Applications frequently redirect users to other

pages, or use internal forwards in a similar

manner. Sometimes the target page is

specified with an invalidated parameter,

allowing attackers to choose the destination

page.

Detecting unchecked redirects is easy. Look for

redirects where you can set the full URL.

Unchecked forwards are harder, because they

target internal pages. “ – OWASP TOP 10 2013

UNVALIDATED REDIRECTS AND FORWARDS

The most common “offensive” vulnerability according to our own statistics

Often considered as with minor impact. And one of my favorites!

Manifests as (this is just a selection);

300-redirects

IFRAME includes

FRAME includes

Forwards is different, as they restrict attacks to the same page.

Forwards may help bypass access restrictions, and are also harder to test for.

UNVALIDATED REDIRECTS AND FORWARDS

In real life this is actually NOT that obvious, it also translates poorly

UNVALIDATED REDIRECTS AND FORWARDS

Scenario #1: The application has a page called “redirect.jsp” which takes a

single parameter named “url”. The attacker crafts a malicious URL that

redirects users to a malicious site that performs phishing and installs

malware.

http://www.example.com/redirect.jsp?url=evil.com

Scenario #2: The application uses forwards to route requests between

different parts of the site. To facilitate this, some pages use a parameter to

indicate where the user should be sent if a transaction is successful. In this

case, the attacker crafts a URL that will pass the application’s access

control check and then forwards the attacker to administrative functionality

for which the attacker isn’t authorized.

http://www.example.com/boring.jsp?fwd=admin.jsp

http://www.example.com/redirect.jsp?url=evil.com
http://www.example.com/boring.jsp?fwd=admin.jsp

Ease of detection?

Manual analysis Easy
Automatic detection Easy

Testing for this problem

Identify URL-like values passed to the server
Pass URL values, also encoded, as parameters
If partial URLs are passed, attempt call to privileged components
Or use a security scanner to attempt this against every parameter

Risks

Broken access control
Phishing, scams and malware distribution lending trust of the initial landing URL

UNVALIDATED REDIRECTS AND FORWARDS

UNVALIDATED REDIRECTS AND FORWARDS

The most dangerous form – similar effect to CSRF

http://example.com/login.cgi?onsuccess=[account.cgi]

http://example.com/login.cgi?onsuccess=[setadmin.cgi?acc=MARTIN]

Main use:
Phishing, often in combination with for example minor XSS vulnerabilities

http://example.com/login.cgi&onsuccess=account.cgi
http://example.com/login.cgi&onsuccess=account.cgi

UNVALIDATED REDIRECTS AND FORWARDS
Well, obviously you need to have a redirect OR forward to be compete!
Honeywell Falcon revisited (a third time? Yes)

http://HOSTNAME/standard/calendars/calendars.php?Node=5000dsfds<%2Fscript><script>alert(docume
.cookie)%3B<%2Fscript>

http://hostname/standard/calendars/calendars.php?Node=5000dsfds</script><script>alert(document.cookie);</script

UNVALIDATED REDIRECTS AND FORWARDS

Where can this be found?

Extremely often in authorization modules, and this is dangerous
dangerous

Affects one of our national E-ID providers (edit: fixed for one

UNVALIDATED REDIRECTS AND FORWARDS

How can I prevent this?

Simply avoid using redirects and forwards

Don’t involve user parameters in calculating the destination. Remember the
indirect object references

If destination parameters can’t be avoided, ensure that the supplied value is valid,
is valid, and authorized for the user

Applications can use ESAPI to override the sendRedirect() method to
make sure all redirect destinations are safe.

Remember that also internal URLs are very dangerous if you accept
GET-based parameters.

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html

INVALIDATED REDIRECTS AND FORWARDS

More reading

https://www.owasp.org/index.php/Top_10_2013-A10-
A10-Unvalidated_Redirects_and_Forwards

CWE-601

WASC-38

OWASP ESAPI SecurityWrapperResponse
sendRedirect() method

https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards

THANK YOU FOR LISTENING

mj@outpost24.com

mailto:mj@outpost24.com

