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Properties of  a good classifier include:

• predictive performance

• explainability (e.g., why is a person healthy?)

{healthy,  ill}

(body temperature, gender, …)

classifier

class

attributes
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Explainability in Machine Learning
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The EXTREMUM framework
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Data Representation 
&  Integration                

Law and Ethics

Explainable ML

EXTREMUM

Medical data sources



Electronic Health Records (EHRs)
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• Diagnoses (ICD)

• Medications (ATC)

• Procedures (CPT)

• Blood tests

• More complex data sources
o clinical notes
o medical images
o MRIs
o ultra-sounds
o ECGs
o …

A01AD05
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Pilar I: Data Management & Integration
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• How to integrate heterogeneous data sources

• Define a unifying data representation that can facilitate machine learning

• Maintain the anonymity of the individuals and the integrity of their private

information

Electronic patient records

Karolinska University Hospital
(TakeCare)
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WHO Collaborating Centre for 
International Drug Monitoring 
(VigiBase)

Individual case safety reports
Chemical compound data

Pharmaceutical companies
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H

• EHR: patient record

• Many complex variables (static, temporal, text, images)

• An event of  interest H: e.g., an Adverse Drug Event (ADE), Heart Failure 

Goal: Come up with explainable predictions

Defining temporal abstractions
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• Trade-offs between explainability + accuracy

• Ability to understand the predictions + act to prevent undesirable

outcomes without compromising predictive performance

black box 
classifier

The patient will die
from HF in 2 days!

Now what? 
Please tell me 

why?

Explainable and 
Transparent ML

Pilar II: Explainable Machine Learning



Time series explainability



Attention-based ADE prediction
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X-Ray Ranking and Explanatory
Diagnostic Tagging
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• Legal requirements for explanations (GDPR)

• Bias detection and mitigation in the training data:
o discriminatory variables

o complex relation patterns

• Formulation of  a legal framework
o ability to check the legal compliance of  ML algorithms

o ability to identify and remove bias

Pilar III: Legal and Ethical Compliance



Demonstrator beta 1.0
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Demo scenario Data types Classification models Explainability techniques

Cardiovascular
disease identif.

Tabular data: 
binary, categorical

Random forests Actionable Feature Tweaking a.k.a
Counterfactual Explanations

Time series 
tweaking via 

shapelet
transformations 

Time series: 
univariate and 
multivariate

Random shapelet forests
SVM 
K-NN

Explanation guided by prototypes
LIME on DFT features
Global tweaking: k-NN, SVM 
Explain [T1]

Medical X-ray
ranking and 
captioning

Images: x-ray 
medical images

Ranking: BI-CXN
Tagging: TAG-CXN
Captioning: LSTM-ETD

X-Ray Ranking and Explanatory
Diagnostic Tagging

• Tool created using Django and Python
• Facilitate its scalability with future data science

applications developed in this programming language

Thanks to

Luis Quintero (SU)
Sugandh Sinha (RISE)



Demonstrator beta 1.0
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Data exploration
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Time series counterfactuals
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Thank you!
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Questions?

The data science group at SU

https://dsv.su.se/en/research/research-areas/datascience/

The EXTREMUM project

https://dsv.su.se/en/research/research-areas/datascience/extremum-explainable-and-ethical-machine-
learning-for-knowledge-discovery-from-medical-data-sources-1.442728

https://dsv.su.se/en/research/research-areas/datascience/
https://dsv.su.se/en/research/research-areas/datascience/
https://dsv.su.se/en/research/research-areas/datascience/extremum-explainable-and-ethical-machine-learning-for-knowledge-discovery-from-medical-data-sources-1.442728
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